Blue Gene/L: Applications and
Tracing

Macie] Brodowicz
Sharon Brunett

Caltech

BG/L Workshop, Aug. 2002

Magnetic Hydro Dynamic (MHD)

Code Overview

e Parallel MHD fluid code solves equations of
hydrodynamics and resistive Maxwell's equations

Part of larger application which computes dynamic
responses to strong shock waves impinging on target
materials

Fortran 90 + MPI

MPI Cartesian communicators

Nearest neighbor comms use non blocking send/recv
MPI Allreduce for calculating stable time steps

BG/L Workshop, Aug. 2002

MHD Parallel Implementation

* Physical domain decomposed into regular domains
assigned to processors

— Extra cells surround domain, yielding overlap region
between neighboring subdomains

— Nearest neighbor comms exchange data in overlapping
regions

— Global reduction of minimum timestep at the start of each
timestep

BG/L Workshop, Aug. 2002

MHD Trace Summary

« Blute[convert,merge] used to post process input to
BG/L network simulator

e 100 iteration runs, 16 - 512 CPUs using bisim2.0
— 161 MB merged trace.ute file from 256 CPU
— Blfakemain statistics on 256 way blute input file
» 768,000 simulated MPI Isend/Irecv events
* Min msg size = 320 bytes, max = 25600 bytes, avg =
1720 bytes
o 8x8x4 torus => 2.83 hops / pnt. 2 pnt. message

o 4x8x8 torus => 1.63 hops/ pnt. 2 pnt message

BG/L Workshop, Aug. 2002

MHD Summary

e Traces through network simulator show code is CPU
bound

— Increasing problem size doesn’t increase comms to
computation ratio

» Good for production runs, bad for network stress testing!
« MHD’s good scaling, simple MPI calls and CPU

bound characteristics make it a good candidate for
node simulator tracing

— Anticipating progressively useful node simulator binaries
from IBM in Sepit.

» Functionality verification, review assembly output, cache
level statistics for main MHD loops

BG/L Workshop, Aug. 2002

Quantum Monte Carlo (QMC)
Application

« Computational method for potentially allowing
material properties to be calculated to within chemical
accuracy

— Code base from ASCI/ASAP Material Properties group at
Caltech, led by Bill Goddard

— Manager/worker paradigm

« Two computationally intensive phases with statistics
gathering MPIl_Reduce done on manager node

— Efficient parallel algorithm being developed to efficiently
divide calculation among available processors and minimize
global communication

BG/L Workshop, Aug. 2002

QMC Tracing Status

* Ported to SP2 (blue pacific) and SP3 (frost) at
LLNL
— C++ code, works with native and GNU compilers

e Trace files (raw and ute) completed for 128

way runs

— Blfakemain post processing of merged traces
causes core dumps

BG/L Workshop, Aug. 2002

QMC Summary

* Network traces for QMC use M. Brodowicz’s trace

analysis scripts
— MPI_Reduce and MPI_Iprobe counts were trivial, compared
to computational demands
 QMC test kernel for distributing workload to many
workers with smaller memory working on SP2
— Ready to test on IBM’s node simulator

BG/L Workshop, Aug. 2002

Gyrokinetic Toroidal Code (GTC)
Overview

— GTC calculates micro-turbulence in a tokamak using kinetic
equations in a collisionless regime

* Developed at Princeton Plasma Physics Lab. by
Stephane Ethier

e Sources are Fortran 90 + MPI
— Torus geometry surrounded by twisting magnetic field lines
» Grid follows magnetic field lines in real space

» Particles move around the torus, along magnetic field
lines, at very high velocities yet have a much slower
motion in the perpendicular direction

* One dimensional domain decomposition in toroidal
direction

BG/L Workshop, Aug. 2002

GTC Implementation and Tracing

e Particle in Cell (PIC) approach

 Particles cross boundaries of two domains via
MPI|_sendrecv nearest neighbor calls

« Highly compute bound except for synchronizing
MPI_Allreduce calls

— 95% compute bound according to BLUTEZ2.1 traces

BG/L Workshop, Aug. 2002

GTC Tracing Summary

* Production code not a good network

stress test

— 64 way GTC run yields 832,128 MPI_Gather events and 280
Gceycles burst per node

— 96 way GTC run for fixed problem size becomes less
Interesting

* 94,080 MPI_Gather events and 930 Gcycles burst per
node

« Eliminating turbulence calculations and electric field
fluctuations yields better network stress test

— 15% comms overhead on 96 way run

BG/L Workshop, Aug. 2002

GTC Event Count and Message Sizes

64 CPUs 200 Iterations

Avg. [bytes]

MPI_Allreduce MPI_Sendrecv MPI1_Bcast
Count 57,753 359,074 3,265
Min [bytes] 25,779,005 25,729,324 22,758
Max [bytes] 357,552,832 357,849,187 30,849,074
192,993,517 193,211,951 22,146,817

BG/L Workshop, Aug. 2002

3-D Adaptive Mesh Refinement
(AMR3D)

Fluid dynamics code based on two major software

components:

— Richtmyer-Meshkov shock simulation with Cartesian meshes
written by Ravi Samtaney (Caltech, Princeton) — Fortran

— GrACE data management library designed by Manish Parashar
(Rutgers University) — C++. Grace supports mesh generation and
removal, automatic load balancing and runtime statistics gathering.

AMR3D'’s behavior is highly dynamic with respect to CPU
utilization and memory usage. Communication patterns

Include:
— Point-to-point nearest-neighbor updates of boundary regions

— Global reductions to determine the timestep value to be used
throughout the next iteration

— Collective and point-to-point message bursts generated by grid
recomposition events

BG/L Workshop, Aug. 2002

AMR3D: Communication Profile

50 time steps on 16 processors, initial grid size 2048x32x32

‘ Point-to-point M Collective ‘

1200

1000

800 -

600 -

Count

400 +

200

I 1110 T TR Y YA TR AT T

0 2.50E+11 5.00E+11 7.50E+11 1.00E+12 1.25E+12 1.50E+12

CPU cycles

BG/L Workshop, Aug. 2002

AMR3D: Message Size Distribution

‘l Point-to-point B Collective

4500

4000

3500

3000 -

2500

Count

2000

1500 -

1000

500 - ||
07 T _\

4 32 256 2K 16K 128K M 8M

Message size [bytes]

BG/L Workshop, Aug. 2002

Lennard-Jones, Spatial Decomposition
(LJS)

Short-range molecular dynamics code written in Fortran by
Steve Plimpton (SNL):
— Simulates Newtonian interactions in large groups of atoms

— Each processor keeps track of the positions and movements of
atoms in its 3-D “box”

— Point-to-point messages are exchanged:

» At the end of each timestep to acquire atom positions from
nearby “boxes” (for computation of forces)

« Every few timesteps to reassign positions of atoms due to
movement (binning)

— Collective calls used exclusively during setup phase and
computation of the final statistical information

BG/L Workshop, Aug. 2002

LJS: Communication Profile

50 time steps on 16 processors, problem size 1603 (16 mil. atoms)

‘ 1 Point-to-point M Collective ‘

1000

900

800 -

700

600

500 -

Count

400 I

300 -

200 -

100 - "

ol u 1 1 I ‘ '
0 1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11

——

CPU cycles

BG/L Workshop, Aug. 2002

LJS: Message Size Distribution

‘l Point-to-point @ Collective ‘

7000

6000

5000

4000 -

Count

3000 -

2000

1000

4 32 256 2K 16K 128K M

Message size [bytes]

BG/L Workshop, Aug. 2002

Recursive Coordinate Bisection
(RCB)

Domain decomposition kernel written in C by Steve Plimpton
(SNL):
— Recursively subdivides sets of 3-D blocks along their longest edge

to evenly distribute the cumulative weight of material points (“dots”)
across processors

— Generates random and lattice-aligned test groups of dots

— Weight assignment to dots is optional (distribution by count only)
— Possible to simulate random movements of particles

— Communication bound

* Reductions and barriers over subdomains with specifically
generated communicators

» Dots propagated through point-to-point calls

BG/L Workshop, Aug. 2002

RCB: Communication Profile

50 time steps on 16 processors, 32 million particles

‘ 1 Point-to-point M Collective ‘

1400

1200

1000

800 -

Count

600 -

400

200 . ‘. ‘) ‘|‘|‘| L | ||I‘|

0
0 1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11 6.00E+11 7.00E+11 8.00E+11 9.00E+11

CPU cycles

BG/L Workshop, Aug. 2002

RCB: Message Size Distribution

‘l Point-to-point @ Collective ‘

25000

Count

B - T

1K 16K 256K am 64M

Message size [bytes]

BG/L Workshop, Aug. 2002

Burst time distribution

T AVR3D O LJS ORCB|

35000

30000

25000
20000
. _
>
3

15000 1

10000

5000]

0 | | r‘1__J_w | [_1__r‘7 | __] | | | {_w-{_T | (_1__
100 1000 10000 100000 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10
Burst time [cycles]

BG/L Workshop, Aug. 2002

Near Term Plans

* Create small computational kernels for initialization
and statistics gathering in QMC

— Preparing test runs for IBM to run through the VHDL
simulator

 Complete BLUTE tracing for more communications
Intensive GTC runs and MPI stress tests

* Prepare MHD kernel for BG/L node simulator

e Collect and analyze ETF traces of the remaining
applications

* Derive parameters for statistical simulator

BG/L Workshop, Aug. 2002

Designing a Trace Tool: Desired
Characteristics

 Low overhead (both temporal and spatial)
* Freely modifiable and expandable

o Contents of trace files always interpretable by
provided tools

 Portable

« Transparent buffering and handling of potentially
large amount of data

e Optimized for sequential access, but capable of fast
advance through sections of trace file

e Multiprocessor support (trace merging, event
matching and ordering)

BG/L Workshop, Aug. 2002

Expandable Trace Format

Structure:
 Trace is a sequence of files

« Each file includes header, followed by any number of
dictionaries and data frames, and a trailer

— Header describes low-level parameters of trace (endianness,
elementary component sizes, version) and, together with
trailer, multi-file continuations

— Dictionaries (token tables) contain definitions of symbols
added by the user

— Frames are sequences of tokens interleaved with actual
trace data

BG/L Workshop, Aug. 2002

ETF: Features

— User-defined token and count field sizes
— Big- and little-endian platform support
— Data types
* Primitives (integers, FP numbers, strings)
 Compound (fixed and variable length arrays, records)
— Namespaces
— Hierarchical symbol definitions
— Dictionary generation from human-readable strings
— Event timers
» TSC register on Intel x86 processors
 MPI_Wtime
» gettimeofday()
o Other?
— Written in C++ (templates for improved performance)

BG/L Workshop, Aug. 2002

ETF: MPI Support

 All point-to-point communication (MPI-1)
 All collective communication (MPI-1)

* Non-blocking request tracking

« Communicator creation and destruction

e Datatype decoding (requires MPI-2 support)
 Languages: C, Fortran

« Easy instrumentation of applications

BG/L Workshop, Aug. 2002

MPI Tracing Issues

o Extraction of exact initiation and completion
times for non-blocking calls

* Notion of message size in collective
communication (e.g., MP|_Barrier vs.
MPI| Bcast vs. MPI_Gather)

e Trace interpretation
« Portability of Fortran component

BG/L Workshop, Aug. 2002

ETF. Memory Reference Tracing

Tracking of statically and dynamically allocated
arrays (identifiers, element sizes, dimensions)

Tracking of scalar variables

Read and write accesses to individual scalars and
array elements as well as contiguous vectors of
elements

Function calls
Program execution phases

But;

Difficult instrumentation (by hand only)

BG/L Workshop, Aug. 2002

Future Work

e Trace parsing library

* Trace dump tool (equivalent of bllsute) with basic
filtering capabillities

* Trace merge utility (with global event ordering)

* Further optimization of tracer code

e Better customization of MPI traces

o Statistical analysis tool (min/max, counts, histograms)

e Optional: trace conversion utility (e.g., ETF-BLUTE)

« Optional: trace compaction tool

BG/L Workshop, Aug. 2002

